Tabla de frecuencias

265 0

La tabla de frecuencias (o distribución de frecuencias) es una tabla que muestra la distribución de los datos mediante sus frecuencias. Se utiliza para variables cuantitativas o cualitativas ordinales.

La tabla de frecuencias es una herramienta que permite ordenar los datos de manera que se presentan numéricamente las características de la distribución de un conjunto de datos o muestra.

Construcción de la tabla de frecuencias

Cabe distinguir entre:

  • Tabla de frecuencias con datos no agrupados.
  • Tabla de frecuencias con datos agrupados.
Construcción de una tabla de frecuencias con datos no agrupados
  1. En la primera columna se ordenan de menor a mayor los diferentes valores que tiene la variable en el conjunto de datos.
  2. En las siguientes columnas (segunda y tercera) se ponen las frecuencias absolutas y las frecuencias absolutas acumuladas.
  3. Las columnas cuarta y quinta contienen las frecuencias relativas y las frecuencias relativas acumuladas.
  4. Adicionalmente (opcional) se pueden incluir dos columnas (sexta y séptima), representando la frecuencia relativa y la frecuencia relativa acumulada como tanto por cien. Estos porcentajes se obtienen multiplicando las dos frecuencias por cien.

Tipos de frecuencias

Existen cuatro tipos de frecuencias:

Frecuencia absoluta

La frecuencia absoluta (ni) de un valor Xi es el número de veces que el valor está en el conjunto (X1, X2,…, XN).

La suma de las frecuencias absolutas de todos los elementos diferentes del conjunto debe ser el número total de sujetos N.

Frecuencia absoluta acumulada

La frecuencia absoluta acumulada(Ni) de un valor Xi del conjunto (X1, X2,…, XN) es la suma de las frecuencias absolutas de los valores menores o iguales a Xi.

Frecuencia relativa

La frecuencia relativa (fi) de un valor Xi es la proporción de valores iguales a Xi en el conjunto de datos (X1, X2,…, XN). Es decir, la frecuencia relativa es la frecuencia absoluta dividida por el número total de elementos N.

Las frecuencias relativas son valores entre 0 y 1, 0 ≤ fi ≤ 1. La suma de las frecuencias relativas de todos los sujetos da 1. Supongamos que en el conjunto tenemos k números (o categorías) diferentes.

Si se multiplica la frecuencia relativa por cien se obtiene el porcentaje (tanto por cien %).

Frecuencia relativa acumulada

Definimos la frecuencia relativa acumulada (Fi) de un valor Xi como la proporción de valores iguales o menores a Xi en el conjunto de datos (X1, X2,…, XN). Es decir, la frecuencia relativa acumulada es la frecuencia absoluta acumulada dividida por el número total de sujetos N.

La frecuencia relativa acumulada de cada valor siempre es mayor que la frecuencia relativa. De hecho, la frecuencia relativa acumulada de un elemento es la suma de las frecuencias relativas de los elementos menores o iguales a él.

Ejemplo.

Un profesor tiene la lista de las notas en matemáticas de 30 alumnos de su clase. Las notas son las siguientes:

 Frecuencia absoluta

Se realiza el recuento de la variable que se estudia (notas) para ver el número de veces que aparece cada nota.

Frecuencia absoluta acumulada

Se calculan las frecuencias absolutas acumuladas (Ni) como la suma de las frecuencias absolutas de los valores menores o iguales a X.

Frecuencia relativa

Se calcula la frecuencia relativa de cada elemento como la división de la frecuencia absoluta entre el total de elementos N=30.

  • f1(3) = n1(3)/N = 2/30 = 0,07
  • f2(4) = n2(4)/N = 4/30 = 0,13
  • f3(5) = n3(5)/N = 6/30 = 0,20
  • f4(6) = n4(6)/N = 7/30 = 0,23
  • f5(7) = n5(7)/N = 5/30 = 0,17
  • f6(8) = n6(8)/N = 3/30 = 0,10
  • f7(9) = n7(9)/N = 2/30 = 0,07
  • f8(10) = n8(10)/N = 1/30 = 0,03

Se pueden calcular las frecuencias relativas en porcentaje (%) multiplicándolas por 100.

Frecuencia relativa acumulada

Para obtener la frecuencia relativa acumulada se divide la frecuencia absoluta acumulada entre el número total de elementos (N=30). Esto da el tanto por uno de elementos iguales o menores al elementos que se estudia.

Se pueden calcular las frecuencias relativas acumuladas en porcentaje (%) multiplicándolas por 100.

Adicionalmente, se pueden incluir dos columnas con los porcentajes de las frecuencias relativas y frecuencias relativas acumuladas. Se obtiene la siguiente tabla.

Jesus Aragón Pimienta

Jesus Aragón Pimienta

Ingeniero civil, Maestro de matematicas